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Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC) is attributed to 

recurrence of the disease after curative treatment and the resistance of HCC cells to conven-

tional chemotherapy, which may be explained partly by the function of liver cancer stem cells 

(CSCs). Liver CSCs have emerged as an important therapeutic target against HCC. Numer-

ous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, 

CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for 

identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. 

In studies of animal models and large-scale genomic analyses of human HCC samples, many 

signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, 

which accounts for the stemness and aggressive behavior of these cells. Antibodies and small 

molecule inhibitors targeting the signaling pathways have been evaluated at different levels 

of preclinical and clinical development. Another strategy is to promote the differentiation of 

liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption 

of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer 

treatment. To overcome the challenges in developing treatment for liver CSCs, more research 

into the genetic makeup of patient tumors that respond to treatment may lead to more effective 

therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC 

response to these agents. Herein, we review the current strategies for developing treatment to 

eradicate liver CSCs and to improve the outcome for patients with HCC.

Keywords: cancer stem cell,  therapeutic targets, surface maker, signaling pathways, transforming  

growth factor beta

Introduction
Hepatocellular carcinoma (HCC), a major cause of worldwide morbidity and mortality, 

is the third leading cause of cancer-related death.1 Age-adjusted HCC incidence rates in 

the USA tripled between 1975 and 2005.2 For early-stage disease, the curative treatment 

options include resection, radiofrequency ablation, and transplantation. For patients who 

have multifocal lesions in the liver without vascular invasion, transarterial chemoembo-

lization has been shown to prolong survival. Treatment for patients with advanced HCC 

is limited. Sorafenib, a multikinase inhibitor, is the only systemic treatment approved by 

the US Food and Drug Administration that has conferred a modest survival benefit in 

this group by prolonging overall survival by 2 months in a randomized Phase III clinical  

trial.3 However, because of recent advances in the molecular pathogenesis of HCC, 

specifically in our understanding of cancer stem cell (CSC) biology, there is potential 

for the development of many novel pharmacologic targets and therapeutic strategies.
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Liver cancer stem cells
A CSC concept was proposed several decades ago to explain 

two recurring observations, ie, that most cancers consist of 

phenotypically heterogeneous tumor cells resembling distinct 

stages of normal tissue development, and that only a fraction 

of cells from both hematologic and solid malignancies are 

tumorigenic.4–6

Accumulating evidence supports the origination of 

HCC from transformation of liver stem/progenitor cells. 

Approximately 40% of HCC cases have clonality and are thus 

believed to originate from progenitor/stem cells.7–10 The liver 

has high regenerative potential, and small oval hepatic pro-

genitor cells around the peripheral branches of the bile ducts, 

the canals of Hering, can differentiate into biliary epithelial 

cells and hepatocytes.11 These oval liver progenitor cells 

share molecular markers with adult hepatocytes (albumin, 

cytokeratin 7, CK19, oval cell markers [OV6, A6, and OV1], 

chromogranin-A, and neural cell adhesion molecules) and 

fetal hepatocytes (α-fetoprotein).7,11 They are also positive 

for more common stem cell markers such as CD34+, Thy-1+, 

c-Kit+, and FMS-like tyrosine kinase 3.12

The role of liver progenitor cells in hepatocarcinogenesis 

was first suggested in the Solt-Farber and diethylnitrosamine 

models of experimental liver injury and hepatocarcinogenesis 

in the rat.13,14 Since then, more data have suggested that liver 

CSCs are responsible for cancer initiation, local recurrence, 

metastasis, and therapy resistance in subsets of HCC. In addi-

tion, microarray-generated molecular classifications of HCC 

suggest a potential stem cell origin in a subpopulation of human 

HCC and underline prognostic implications for the prospective 

analysis of putative CSCs.15 Taken together, liver CSCs have 

emerged as the therapeutic target for HCC, and there is increas-

ing interest in identifying strategies eradicating CSCs.16,17

CSC markers and potential 
therapeutic targets against  
liver CSCs
Numerous surface markers for HCC stem cells have been 

identified, and include CD133, CD90, CD44, CD13, and 

epithelial cell adhesion molecules (EpCAMs).18–21 Although 

their roles in liver CSCs are not fully understood, studies 

have shown that targeting these markers can specifically 

inhibit liver CSCs with high efficacy. It is reported that the 

tumorigenicity and invasive capacity of liver CSCs can be 

impaired by targeting CSC surface markers, leading to reduc-

tion of the CSC pool.

A handful of new therapeutic agents have been developed 

to target CSC markers. VB4-845, an immune recombinant 

fusion protein targeting EpCAMs, has been shown to strongly 

suppress sphere formation and tumor formation in vivo by 

decreasing the cancer cell population expressing CD133 and 

CD13.22 Targeting of the CD44 isoforms in HCC was able 

to selectively deplete CD44-positive HCC cells.23 The anti-

CD44 antibody-mediated liposomal nanoparticle has been 

developed to target CSCs and monitor cancer progression 

or regression in HCC cells.24 8-bromo-7-methoxychrysin, 

a synthetic analog of chrysin, has inhibited the prolifera-

tion, self-renewal, and invasion of liver CSCs in vitro and 

in vivo, downregulated the expression of liver CSC biomark-

ers CD133 and CD44, and induced epithelial-mesenchymal 

transition by downregulating the expression of Twist and 

β-catenin in liver CSCs.25 Therefore, direct targeting of 

liver CSC-specific markers may be a promising therapeutic 

strategy for eradicating liver CSCs.

Stemness signaling that serves as a 
therapeutic target for HCC CSCs
One alternative approach to targeting CSCs has been to 

examine the cellular pathways that are required for regulation 

of normal stem cells. Many signaling pathways observed in 

normal stem cells can also be detected in CSCs. These path-

ways include but are not limited to Wnt/β-catenin, Hedgehog, 

and Notch signaling pathways.26

Disturbing the signaling involved in normal stem cell 

fate reportedly decreased the self-renewal and proliferating 

capabilities of CSCs. The signaling pathways, which are 

proposed to regulate liver CSC function and to contribute to 

the aggressive behavior of HCC, are often found to have the 

characteristics summarized in Figure 1. By reviewing the 

literature, we found that seven pathways have four to five of 

the properties described in Figure 1 that provide promising 

targets for treating HCC against liver CSCs.

Figure 1 Properties of candidate signaling pathways that regulate liver cancer stem cell function.

Regulation of embryonic stem cell proliferation and differentiation.
Regulation of expression of stem cell markers.
Genetic alteration of the pathway promotes development of hepatocellular carcinoma in mice.
Alteration of the pathway increases tumor initiation capacity and/or chemoresistance in xenotransplant of hepatocellular carcinoma.
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Wnt signaling
The Wnt signaling pathways are involved in determining the 

proliferation and fate of embryonic and adult stem cells. The 

cascade has also been shown to regulate cell axis patterning 

and cell migration in the developing embryo. Dysregulation 

of this pathway is found in the carcinogenesis of multiple 

cancer types, including HCC. Liver-targeted disruption 

of adenomatous polyposis coli (APC) in mice activates 

β-catenin signaling and leads to HCC tumorigenesis.27

The Wnt pathway shares a common initiating event, 

a Wnt family protein binding to a transmembrane Frizzled 

G-protein coupled receptor (along with other requisite 

coreceptors and ligands), thereby activating the intracellular 

protein Dishevelled. The activated Frizzled-Dishevelled 

complex leads to intracellular accumulation of β-catenin 

by deactivating the ubiquitinating β-catenin destruction 

complex. High amounts of β-catenin then translocate into 

the nucleus, where they induce phenotypic changes through 

transcription factor activation.28 Epithelial cell adhesion 

molecule (EpCAM), the downstream gene of Wnt signal-

ing, forms a positive feedback loop in the promotion of liver 

CSC proliferation by activation of Wnt signaling. Upon 

proteolysis activation, EpCAM releases its intracellular 

domain, which translocates to the nucleus and associates 

with β-catenin and Lef-1 to transactivate genes and promote 

cell proliferation.29 EpCAM-positive HCCs have been shown 

to have a poor prognosis and more aggressive behavior after 

xenotransplantation in nonobese diabetic/severe combined 

immunodeficient mice, thereby rendering EpCAM a putative 

marker of HCC CSCs.29,30

The Wnt pathway can be inhibited by blocking β-catenin 

interaction with the TCF gene; when this pathway was inhib-

ited in one study, CSC numbers and spheroid formation were 

reduced.31,32 These findings, showing the importance of the 

Wnt pathway in CSC viability, have led to a number of novel 

approaches to HCC treatment.32–37 However, no clinical trials 

are under way for Wnt-specific small molecule inhibitors 

in HCC.

TGF-β signaling
Transforming growth factor beta (TGF-β) signaling pathways 

can either promote or inhibit tumorigenesis, depending on 

the cell microenvironment. TGF-β is excreted in an autocrine 

fashion in varying amounts, depending on the cell type. Acti-

vated TGF-β surface receptors II and/or III (TGFBII/III) form 

a complex with TGF-R1, which then activates the protein 

kinase intracellular domain of TGF-RI. This protein kinase 

activates Smad transcription factors 2 and 3, either of which 

then forms a complex with Smad 4 proteins, translocating 

to the nucleus to regulate gene expression.

A functional role of TGF-β signaling in liver stem 

cell niches has been demonstrated through mouse genet-

ics. Disruption of TGF-β signaling yields a phenotype 

similar to that of a human CSC disorder, Beckwith-

Wiedemann syndrome, a disease characterized by stem 

cell alteration.38 Loss or reduced expression of the 

TGF-β receptor (TβRI/TβRII) or signaling molecules 

(eg, Smad 4) also enhances malignant progression in 

various human tumor types, cancer xenografts, and 

transgenic mice.39–45 This is at least partially due to 

the activation of mitogenic and oncogenic pathways 

involving CDK4, PRAJA, β-catenin, TERT, and c-MYC, 

that occurs when the TGF-β pathway is inactivated.46

Disruption of TGF-β signaling by genetically removing 

one copy of Sptbn1, a Smad3 adapter protein, results in 

spontaneous development of HCC; expression analysis of 

these tumors highlighted marked activation of genes involved 

in the interleukin (IL)-6 signaling pathway, including IL-6 

and Stat3.10

Chronic inflammation is a major risk factor for 

cancer development. The interaction between liver CSCs 

and surrounding immune cells plays an important role 

in hepatocarcinogenesis. Suppressed TGF-β signaling 

activates Toll-like receptor 4/NANOG, a mediator of the 

immune and inflammatory response that increases pluripo-

tency genes and tumorigenesis and promotes the chemore-

sistance of liver CSCs.47 In contrast, excessive TGF-β 

could increase expression of the CSC marker in HCC and 

render HCC highly tumorigenic after xenotransplantation.48 

Furthermore, when liver CSCs were exposed to TGF-β for 

long periods of time (similar to what occurs in a cirrhotic 

liver), they gained CSC properties, including increased 

marker expression, tumorigenicity, chemoresistance, and 

self-renewal capacity. A number of drugs targeting aber-

rant TGF-β signaling are in development and have shown 

promising preclinical activity in arresting growth and 

metastasis of HCC.49–55 A TGF-β receptor tyrosine kinase 

inhibitor, Ly2157299, is currently being evaluated in HCC, 

with promising results.56

JAK-STAT
The Janus kinase (JAK)-STAT pathway is a unique intracel-

lular signaling cascade that coactivates cytokine receptors 

after extracellular ligand binding, such as interferon, osteo-

pontin, IL-6, and oncostatin. The binding of JAK protein to 

the intracellular domain of certain ligand-activated cytokine 
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receptors (most notably interferon receptors) initiates 

tyrosine transphosphorylation between JAK proteins and the 

intracellular domain of the cytokine receptor. The resulting 

phosphorylated tyrosine binds the SH2 domain of STAT 

proteins, causing their dimerization/activation. Dimerized 

STAT proteins can interact with other proteins within the 

cytoplasm or translocate to the nucleus to act as transcription 

factors. The JAK-STAT pathway has been shown to play a 

key role in hematopoiesis, differentiation, and clonal expan-

sion of immune cells, and immune cytokine transduction in 

nonimmune cells.57

Mice with disruption of TGF-β signaling develop HCC 

and are found to have activation of IL-6/JAK/STAT3 

signaling. Formation of HCC can be prevented by inhibition 

of IL-6/JAK/STAT3, indicating that IL-6/JAK/STAT3 plays 

an important role in the transformation of liver CSCs.10,58 

STAT3 inhibitors suppress the proliferation of HCC cells.58 

Recently, He et al reported that the liver progenitor cells are 

premalignant cells, and become malignant if they are trans-

planted in the damaged liver because transformation of these 

cells requires the correct microenviroment. These progenitor 

cells depend on autocrine IL-6 production and activation of 

IL-6/JAK/STAT3 during transformation in order to form 

HCC.59 The IL-6/JAK/STAT3 signaling pathway may serve 

as a target for the prevention and treatment of HCC.

Notch
The Notch pathway plays an important role in cell-cell signal-

ing, inducing proliferation, homeostasis, and/or differentia-

tion, depending on cell lineage. The initiating cell expresses 

a variety of cell-bound proteins (termed DSL ligands) that 

bind to the extracellular domain of the target cell’s transmem-

brane Notch family protein, inducing proteolytic cleavage 

of the intracellular and extracellular Notch components by 

γ-secretase and tumor necrosis factor-α component enzyme, 

respectively. The Notch intracellular domain is activated by 

further cleaving, translocates to the nucleus, and associates 

with CSL family DNA transcription factors to induce phe-

notypic changes in the target cell.60

Notch overexpression has been shown to be oncogenic 

in lung, breast, colon, and brain CSCs, and pharmacologic 

targeting of this pathway is already being studied in clinical 

trials for these cancers.61–65 When the intracellular domain of 

Notch was conditionally expressed in liver progenitor cells, 

transgenic mice developed HCC within 12 months.66,67

Targeting the Notch pathway could allow inhibition of 

CSC self-renewal and a decrease in tumor growth. Inhibition 

of Notch signaling by γ-secretase inhibitors has decreased 

EpCAM+ liver CSCs. Restored expression of the tumor 

suppressor gene RUNX3 has reduced CSCs in HCC by sup-

pressing Jagged-1-Notch signaling.66 Together, these findings 

suggest that Notch overactivation is involved in liver CSC in 

a significant subset of HCC populations, making it a valuable 

target for the development of therapeutics against HCC.

Hedgehog
The Hedgehog pathway is an important embryonic patterning 

cascade. Paracrine excretion of Hedgehog protein causes a 

variety of responses in the receiving cell, depending on the 

receiving cell type, concentration of Hedgehog protein, and 

concentration of the receiving cell’s transmembrane receptor 

patched protein. Without Hedgehog binding, transmem-

brane receptor patched protein inhibits the transmembrane 

G-coupled receptor Smoothened. Hedgehog therefore acti-

vates Smoothened, which in turn activates zinc transcription 

factors in the GLI family through an incompletely understood 

mechanism. GLI proteins accumulate in the nucleus, activat-

ing or inhibiting Hedgehog gene targets.68

Chronic fibrosing liver injury is a major risk factor for 

hepatocarcinogenesis in humans. Mice with targeted deletion 

of Mdr2 (the murine ortholog of MDR3) develop chronic 

fibrosing liver injury and eventually HCC. Mdr2(-/-) mice 

consistently expressed Hedgehog ligands and progressively 

accumulated Hedgehog-responsive liver myofibroblasts 

and progenitors with age. Treatment of aged Mdr2-deficient 

mice with the Hedgehog signaling antagonist GDC-0449 

significantly inhibited hepatic Hedgehog activity, decreased 

liver myofibroblasts and progenitors, reduced liver fibrosis, 

promoted regression of intrahepatic HCCs, and decreased the 

number of metastatic HCCs without increasing mortality.69 

Enhanced Hedgehog signaling activity was found to contrib-

ute to chemoresistance in HCC. A specific Hedgehog inhibi-

tor, cyclopamine, not only significantly blocked Hedgehog 

signaling activity but also inhibited the proliferation of liver 

CSCs, suggesting that Hedgehog signaling is critical for the 

tumorigenicity of CSC subpopulations.

Many Hedgehog pathway inhibitors are being evalu-

ated, and most agents focus on targeting the Smoothened. 

receptor.70 Currently, agents targeting this pathway, including 

vismodegib (the most studied Smoothened inhibitor), are in 

preclinical and Phase I trials for HCC.

PI3K/AKT/mTOR and IGF1
The phosphatidylinositol-4 5-bisphosphate 3-kinase (PI3K)/

AKT/mammalian target of rapamycin (mTOR) pathway 

plays an important role in cell proliferation and survival. 
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Activation of the PI3K/AKT/mTOR pathway has been 

shown to accelerate hepatocarcinogenesis driven by N-Ras 

or β-catenin.71,72 Mutational inactivation of phosphatase and 

tensin homologue is found in a variety of cancers, including 

HCC.73,74 Insulin growth-like factor/mTOR signaling has 

been shown to increase chemoresistance and tumor-imitating 

capacity in liver CSCs.75–78 Small molecule inhibitors of 

this pathway have shown promise in a variety of cancers, 

including HCC.79

c-MET (hepatocyte growth  
factor receptor)
Another transmembrane receptor affecting multiple prolifera-

tive signaling pathways is the hepatocyte growth factor recep-

tor, encoded by the c-MET oncogene. Hepatocyte growth 

factor receptor binds to the paracrine scatter factor, dimerizes, 

and transphosphorylates itself to create two catalytic tyrosine 

residues on its cytoplasmic domain. c-MET-positive cells 

demonstrated CSC-like characteristics, such as chemore-

sistance, tumor sphere formation, and increased expression 

of CD44 and ABCG2; furthermore, PHA665752, a c-MET 

inhibitor, suppressed tumor sphere formation and inhibited 

CD44 expression.80 In addition, hepatocyte growth factor 

receptor released by stromal cells around liver CSCs were 

shown to be required for liver CSC homeostasis.81 A variety 

of small molecule hepatocyte growth factor receptor/c-MET 

inhibitors are currently in development.82

Differentiation of liver CSCs
The differentiation of cancer cells into less aggressive forms 

has been a successful treatment strategy, as demonstrated 

in the treatment of acute promyelocytic leukemia. In one 

study, the application of all-trans retinoic acid after normal 

chemotherapy resulted in a 90% remission rate and a 70% 

cure rate in acute promyelocytic leukemia.83 Therapeutic 

agents that promote the differentiation of liver CSCs have 

also been used to deplete these cells. Hepatocyte nuclear 

factor-1 alpha (HNF1α), one of the key transcription fac-

tors of the hepatocyte nuclear factor family, plays a critical 

role in hepatocyte differentiation. A recombinant adenovirus 

carrying the HNF1α gene inhibits HCC xenograft growth in 

mice by inducing the differentiation of hepatoma cells into 

mature hepatocytes and G(2)/M arrest.84

Oncostatin M, an IL-6-related cytokine known to induce 

the differentiation of hepatoblasts into hepatocytes, has been 

shown to induce the hepatocytic differentiation of EpCAM(+) 

HCC cells. EpCAM(+) HCC cells treated with oncostatin M 

have shown enhanced cell proliferation with expansion of 

the EpCAM-negative non-CSC population. A combination of 

oncostatin M and conventional chemotherapy with fluorou-

racil has efficiently eliminated HCC by targeting both CSCs 

and non-CSCs.20 The identification of valid differentiation 

pathways in CSCs may lead to new therapeutic strategies 

against liver CSCs.

Targeting microRNAs in liver CSC
MicroRNAs (miRNAs) are a class of small non-coding 

RNAs involved in the transcriptional and post-transcriptional 

regulation of gene expression. Increasing evidence has dem-

onstrated that miRNAs also play a critical role in normal liver 

development and in the fine-tuning of fundamental biologi-

cal liver processes.85 Studies of miRNAs as biomarkers and 

therapeutic targets in HCC have focused on the group of 

miRNAs maintaining the stemness of liver CSCs, and attri-

bute the resistance of HCC to cytotoxic chemotherapy. The 

miRNA-181 family is highly expressed in EpCAM+ AFP+ 

cells. miRNA-181 cells exert their function by targeting 

Caudal type homeobox transcription factor 2, GATA bind-

ing protein 6, and Nemo-like kinase, which are essential for 

hepatic cell differentiation and the Wnt pathway.85

miRNA-130b is significantly elevated in CD133+ liver 

CSCs and is required for self-renewal, tumorigenicity, and 

chemoresistance.86 miRNA-221 is another tumor-promoting 

miRNA. Overexpression of miRNA-221 in the liver results 

in spontaneous HCC development.87 In contrast with 

miRNA-181 and miRNA-130b, miRNA-26a is a tumor 

suppressor miRNA. Expression of miR-26a was signifi-

cantly downregulated in a MYC-induced hepatocarcinoma 

murine model (tet-o-MYC; LAP-tTA mice), and this result 

was further confirmed by detecting the expression profil-

ing of miR-26a in human HCC and normal liver biopsy 

specimens.88 The tumor suppressive role of miR-26a may 

be related to it’s ability to regulate cell cycle progression by 

targeting cyclin D2 and cyclin E2, two influential players in 

G1/S cell phase transition. Ectopic expression of miRNA-

26a results in blockage of cell proliferation and induction 

of tumor cell apoptosis. Furthermore, miRNAs are shown 

to regulate the drug sensitivity of HCC to chemotherapy. 

miRNA-21 is found to lower the sensitivity of HCC to che-

motherapy by inhibiting phosphatase and tensin homologue 

or programmed cell death 4, but miRNA-101 sensitizes HCC 

cells to chemotherapy by inhibiting myeloid cell leukemia 

sequence 1, a well characterized antiapoptotic member of the 

Bcl-2 family.89,90 Understanding the function of miRNAs in 

liver CSCs will provide a novel strategy to develop treatments 

against liver CSCs.
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Cancer stem cell niche
Disruption of the tumor niche that is essential for CSC homeo-

stasis has become a novel strategy in cancer treatment.91 As 

the main source of extracellular matrix proteins in the tumor 

stroma, hepatic stellate cells decrease the sensitization of HCC 

cells to chemotherapeutic agents by promoting epithelial-

mesenchymal transition and CSC-like features via hepatocyte 

growth factor/Met signaling.81,92 Apart from the molecular 

content surrounding liver CSCs, there is accumulating evi-

dence that the physical environment is a critical mediator of 

HCC tumor behavior.93 The stiffness of the matrix is a strong 

predictor of HCC development. Increasing stiffness was found 

to promote HCC cell proliferation.93 In contrast, a soft environ-

ment induced reversible stem cell characteristics in HCC.94

Summary and future directions
Liver CSCs have emerged as a therapeutic target for HCC, 

resulting in a paradigm shift from traditional therapies to those 

aimed at eradicating CSCs. Strategies for eliminating liver 

CSCs have been developed to target CSC markers, signaling 

transduction pathways, and the CSC niche. Clinical trials using 

inhibitors of TGF-β signaling (LY2157299, PF-03446962), the 

Hedgehog pathway (GDC-0449, PF-04449913, BMS-833923, 

IPI-926, TAK-441), the Notch pathway (RO4929097, BMS-

906024, MK0752), and Wnt pathways (PRI-724) have started 

to emerge, but their efficacy with regard to CSC function 

remains to be determined.54 Table 1 shows current clinical trial 

progress in targeting embryonic stem cell pathways shown to 

be overexpressed in HCC CSCs. Challenges remain, including 

the expressive heterogeneity of these pathways between patient 

tumors, which render agents targeting a single pathway less 

effective against HCC. More study of the genetic makeup of 

patient tumors that respond to these small molecule inhibitors 

may lead to more effective therapy and stronger clinical trial 

outcomes. Standardization of HCC CSC tumor markers would 

be helpful for measuring the CSC response to these agents. 

The CSC theory is an exciting new paradigm that has shown 

promise for future therapy ex vivo. The translational effective-

ness of targeting CSCs remains to be determined.
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